COMP 550
Algorithm and Analysis

Shortest Path
Algorithms

Based on CLRS Secs. 22 and 23

Some slides are adapted from ones by Prof. Jim Anderson

Single-Source Shortest Path (SSSP)

* Tnput: A graph G = (V,E) and a source vertex v €

* Qutput: Shortest path from v to all other vertices

Source: Algorithm Designh and Application by Goodrich and Tamassia

Single-Source Shortest Path (SSSP)

* Tnput: A graph G = (V,E) and a source vertex v €

* Qutput: Shortest path from v to all other vertices

* If G is an unweighted graph, then BFS solves the single-source
shortest path problem.

* What about weighted graph? (this chapter)

Single-Source Shortest Path (SSSP)

* There can by different variations:

» Single destination shortest path problem: Shortest path to v from

all other vertices

* Single-pair shortest path problem: Shortest path between a single

pair of vertices

» All pair shortest path problem: Shortest path between all pair of

vertices

* All of the above can be solved if we can solve Single-Source

version.

Optimal Substructure

* Does shortest-path problem have optimal substructure property?

* Does shortest path from u to v contain shortest path between some

other vertices?

e Yes|

Lemma 22.1. (Subpaths of shortest paths are shortest paths)

If p = (vg, V1,3, ..., Vg) i a shortest path from v, to vy, then p;; = (v;, V44, ..., v;) with
0<i<j<kisashortest path from v; to v;.

Exercise: Does longest path problem have optimal substructure property? (CLRS Sec 14.3)

Optimal Substructure

Lemma 22.1. (Subpaths of shortest paths are shortest paths)

If p = (vg, V1,3, ..., Vg) i a shortest path from v, to vy, then p;; = (v;, V44, ..., v;) with
0<i<j<kisashortest path from v; to v;.

* Proof: "cut and paste”.

« Shortest path from v, to v, looks like this
(e A e A ey

* If p;j is not the shortest path between v; and v;, then assume p;; is the shortest
path between them.

* Using p;; creates shorter path from v, to vy, contradiction. (p is not shortest)

!/

Poi D ij Pjk

Negative-Weight Edges
* Notation: 6(s,u) = Shortest distance from s to v
* 6(s,b) =w(s,a)+w(a,b)=3+(-4) =-1

Source: CLRS

A graph with 11 vertices

Negative-Weight Edges

 What is 6(s, ¢)?
* Many paths: (s, c),(s,c,d,c), (s,c,d,c,d,c), ..
« Weight of the loop (c,d, c) is positive.
* §(s,c) = Weight/cost of path (s,c) =5

Source: CLRS

A graph with 11 vertices

Negative-Weight Edges

* What is 6(s, e)?
* Many paths: (s,e), (s, e,d,e), (s,e,d, e, d,e), ..
« Weight of the loop (c,d, e) is negative.
* §(s,e) = —o (No shortest path from s to e)

Source: CLRS

A graph with 11 vertices

Negative-Weight Edges
* 5(s,f) = 6(s,g) = —oo (Reachable via a negative-weight cycle)
* 6(s,h) = 8(s,i) = 6(s,j) = oo (Not reachable from s)

Source: CLRS

A graph with 11 vertices

Cycles

 Shortest paths do not contain cycles
 Negative—weight cycle = No shortest path
» Positive-weight cycle = Removing cycle decreases path weight

 O-weight cycle = Removing cycle maintains the path weight

__— This represents a cycle not a self-loop

Relaxation

* Shortest-path algorithms keep track of v.d and v.

* v.d =shortest-path estimates, v.m = predecessor vertex in shortest path

« Will call the following two procedures in different algorithms

INITIALIZE-SINGLE-SOURCE(G, s)

Relax edge (u,v): two cases

1 foreachvertexv € G.V

2 v.d = o0 @_2)@ @_2)@
3 v.r = NIL
4 s5.d =0 _E__RELAX(“-V,W) iRELAK(u.v,u-‘)
(5 2 - @ (5 Hz @
RELAX(u, v, w) (a) (b)
1 ifv.d>u.d —I‘—M coteer €89
2 v.d = u.d + w(u,v) (u,v) = An edge, w = weight function

3 V.TT = U

Properties of Relaxation

* Consider any algorithm in which v.d, and v.m are first initialized by calling

Initialize(G, s) [s is the source], and are only changed by calling Relax. We have:

Lemma 22.11 (Upper bound property):
(Vv iiv.d >28(s,v)) is an invariant.

Corollary 22.12 (No-path property):
If there is no path from s to v, then v.d = o is an invariant.

Lemma 22.14 (Convergence property):
If s~~u — visa SP and u.d = §(s,u) prior to calling Relax(u,v,w),
then v.d = §(s, v) all time after Relax(u,v,w) is returned

More on CLRS

Exercise: Prove them (Proofs in Sec. 22.5)

SSSP in DAG

 Input graph is a directed acyclic graph

DAG-SHORTEST-PATHS (G, w, 5)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE(G, s)

3 for each vertex u, taken in topologically sorted order
4

5

for each vertex v € G.Adj[u]
RELAX (u, v, w)

Running time: O(V + E)

Source: CLRS

COMP550@UNC 14

SSSP When Nonnegative- WelghT Edge

 Input graph is a weighted graph with

no hegative-weight edge

* Dijkstra's Algorithm finds SSSPs for

such graphs

“What is the shortest way to travel from Rotterdam to
Groningen, in general: from given city to given city. It
IS the algorithm for the shortest path, which |

» Basically, generalized BFS designed in about twenty minutes. One morning | was
shopping in Amsterdam with my young fiancée, and
e Tdea: When a node is the closest tired, we sat down on the cafe terrace to drink a cup

of coffee and I was just thinking about whether | could
undiscovered node to the source vertex, dothis, andIthen designed the algorithm for the

shortest path....One of the reasons that it is so nice
we have found its shortest paTh was that I designed it without pencil and paper.

....Eventually, that algorithm became to my great

amazement, one of the cornerstones of my fame.”

-Edsger Dijkstra (Comm. Of ACM 2001)

Dijkstra's Algorithm

INITIALIZE-SINGLE-SOURCE(G, s) RELAX (4, v, w)

1 for each vertex v € G.V 1 ifv.d>u.d+wu,v)

2 v.d = o0
3 V. T = NIL g v.d __u.d+ w(u, v)
4 s.d=0 v.mr =u

DIJKSTRA(G, w, §)
1 INITIALIZE-SINGLE-SOURCE(G, s)

All vertices are inserted in Q

S is the head of Q now 2 §=0 Q: Min Priority Queue (order by v.d),

3. 0=0 contains unexplored nodes

4 for each vertex u € G.V

5 INSERT(Q, u)
Greedy strategy: Extfract 6 while Q # 0 S: vertices where we know we've
the head of Q (its shortest —— |}, — ExTRACT-MIN(Q) found the shortest path. (Like gray
distance has been found) g S =SUu nodes in BFS)

9 for each vertex v in G.Adj[u]
Update any shorter distance | !° RELAX (1, v, w)
via node u \4\ if the call of RELAX decreased v.d

12 DECREASE-KEY(Q,v,v.d) Source: CLRS

COMP550@UNC 16

Dijkstra's Algorithm
® O

Not explored yet Currently being explored Already explored

DIJKSTRA(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 § =0

3 0=10

4 for each vertex u € G.V

5 INSERT(Q, u)

6 while Q #

7 u = EXTRACT-MIN(Q)

8 S =S U{u}

9 for each vertex v in G.Adj[u]
10 RELAX(u, v, w)
11 if the call of RELAX decreased v.d
12 DECREASE-KEY (Q, v, v.d)

Example Courtesy: Prof. Jim Anderson

Dijkstra's Algorithm
® O

Not explored yet Currently being explored Already explored

u

DIJKSTRA(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 § =0

3 0=10

4 for each vertex u € G.V

5 INSERT(Q, u)

6 while Q #

7 u = EXTRACT-MIN(Q)

8 S =S U{u}

9 for each vertex v in G.Adj[u]
10 RELAX(u, v, w)
11 if the call of RELAX decreased v.d
12 DECREASE-KEY (Q, v, v.d)

Example Courtesy: Prof. Jim Anderson

Dijkstra's Algorithm
® O

Not explored yet Currently being explored Already explored

\%

DIJKSTRA(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 § =0

3 0=10

4 for each vertex u € G.V

5 INSERT(Q, u)

6 while Q #

7 u = EXTRACT-MIN(Q)

8 S =S U{u}

9 for each vertex v in G.Adj[u]
10 RELAX(u, v, w)
11 if the call of RELAX decreased v.d
12 DECREASE-KEY (Q, v, v.d)

Example Courtesy: Prof. Jim Anderson

Dijkstra's Algorithm
® O

Not explored yet Currently being explored Already explored

\%

DIJKSTRA(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 § =0

3 0=10

4 for each vertex u € G.V

5 INSERT(Q, u)

6 while Q #

7 u = EXTRACT-MIN(Q)

8 S =S U{u}

9 for each vertex v in G.Adj[u]
10 RELAX(u, v, w)
11 if the call of RELAX decreased v.d
12 DECREASE-KEY (Q, v, v.d)

Example Courtesy: Prof. Jim Anderson

Dijkstra's Algorithm
® O

Not explored yet Currently being explored Already explored

DIJKSTRA(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 § =0

3 0=10

4 for each vertex u € G.V

5 INSERT(Q, u)

6 while Q #

7 u = EXTRACT-MIN(Q)

8 S =S U{u}

9 for each vertex v in G.Adj[u]
10 RELAX(u, v, w)
11 if the call of RELAX decreased v.d
12 DECREASE-KEY (Q, v, v.d)

Example Courtesy: Prof. Jim Anderson

Correctness

Theorem 24.6: Upon termination, u.d = §(s,u) for all u € V. (assuming non-
negative weights).

Loop invariant: At the start of each iteration of the while DUKSTRA (G, w,)

INITIALIZE-SINGLE-SOURCE (G, s)

1
loop, v.d = 6(s,v) for all v € S. (S =V when terminate) 2 SQ:%
3 —
. . . 4 for each vertex u € G.V
« Initialization: S = @ (Trivial) 5 INSERT(Q.u)
6 while O # 0
. . 7 u = EXTRACT-MIN(Q)
« IH: At the start of k-th iteration, u.d = §(s,u) forallu € V. 5 S=Sufw
9 for cach vertex v in G.Adj[u]
. . . 10 RELAX(u, v, w)
« Consider the k-th iteration and show that the LI holds at the start: if the call of RELAX decreased v.d
12 DECREASE-KEY(Q, v, v.d)

of (k+1)-st iteration

 The k-th iteration inserts a new vertex to S
 Need to show that the LI holds for the new vertex

Correctness

negative weights).

Theorem 24.6: Upon termination, u.d = §(s,u) for all u € V. (assuming non-

Maintenance (Inductive Step): DUKSTRA(G, v, 5)

 u is extracted from Q =V — S (our goal is to show u.d = §(s, u))

If no s to u path exists, then u.d = §(s,u) = o

0 N N AW =

Otherwise, let (s, ..., x,y, ...u) be a shortest path where
« y is the first vertex in the path that is NOT is S 10

11
12

5(s,y) < 8(s,u), because no negative edge

u.d <y.d, because u is just extracted from Q, but y is not.

Using the upper-bound property,
5(s,y) <d(s,u) <u.d<y.d (1)

INITIALIZE-SINGLE-SOURCE (G, s)
S=0
0=90
for each vertex u € G.V
INSERT(Q, u)
while O # @
u = EXTRACT-MIN(Q)
S =SU{u}
for each vertex v in G.Adj[u]
RELAX(u, v, w)
if the call of RELAX decreased v.d
DECREASE-KEY (Q, v, v.d)

Source: CLRS

Correctness

Theorem 24.6: Upon termination, u.d = §(s,u) for all u € V. (assuming non-
negative weights).

Maintenance (Inductive Step): DUKSTRA(G, w,)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 §=90

* x.d = §(s,x), because x € S (by Inductive Hypothesis) 3 0=10

4 for each vertex u € G.V
5 INSERT(Q, u)

* edge (x,y) was relaxed during the loop that added x to S ¢ while Q 7 0

u = EXTRACT-MIN(Q)
8 S =S U{u}

> Since (x,y) is ina SP from s to y and (x,y) was relaxed when ° foreachvertexvin G.Adjfu

RELAX(u, v, w)

. if the call of R d dv.d
x.d = 6(s,x), y.d gets the value of (s, y) at that time b O CREASE-KEY(O) o 0.d)

(convergence property: Lemma 22.14).
« So, when u is extracted from Q, y.d = 6(s,y) already holds.

* From (1), we get u.d = 6(s,u)

Source: CLRS

Running Time

| Imsert | Extract-Max Total

Running Total # Running Total #
calls time per runni calls fime per running calls
call ng call Time
time
Node- 0(V) o) owWw) o) OoW) 0W? O0()
indexed

array
Binary Use Build-Heap o0(V) o) 0(gV) 0(VIgV) O(E)
Heap instead of n

Inserts

Running time with binary heap is O((V + E) 1gV), which is
O(ElgV)if E =Q(V)

COMP550@UNC

Runnmg Total
time per runnin

call

0(1)

Running
Time

g time

O(E) owv?)

0(gV) O(ElgV) 0OV

+ E)1gV)

DUKSTRA(G, w, 5)

1
2
3
4
5
6
7
8

9
10
11
12

INITIALIZE-SINGLE-SOURCE(G, s)
S=40
0=9
for each vertex u € G.V
INSERT(Q, u)
while Q # @
u = EXTRACT-MIN(Q)
S =S U{u}
for each vertex v in G.Adj[u]
RELAX(u, v, w)
if the call of RELAX decreased v.d
DECREASE-KEY(Q, v, v.d)

SSSP with Negative-Weight Edge

* Dijkstra's algorithm fails when there are negative edges

1 -6

v

* Dijkstra's algorithm discovers w via v. (w.d is set to 2).

SSSP with Negative-Weight Edge

* Bellman-Ford Algorithm

« Can handle negative-weight edges and "detect” reachable negative-weight

cycles.
BELLMAN-FORD (G, w, 5)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 fori =1to|G.V]—1 Running time:0(V - E)
3 for each edge (u,v) € G.E
Negative cycle exists 4 RELAX(u, v, w)

5 for each edge (u,v) € G.E]
Nv.d > u.d+ wu,v) _ Negative cycle
No negative cycle 7 return FALSE detection
s

return TRUE _
Source: CLRS

Bellman-Ford Algorithm

BELLMAN-FORD (G, w, §) Loop invariant for the outer for loop:

INITIALIZE-SINGLE-SOURCE(G, $) | For every vertex v, v.d < shortest-path length
fori =110|G.V| -1 from s to v involving at most i — 1 edges.

for each edge (u,v) € G.E

RELAX (4, v, w) Another Loop invariant for the outer for loop:

1

2

3

4

5 fi h ed G.E : :
) or each edge (u,v) € For every vertex v, if there is a shortest path
7

8

from s to v with at most i — 1 edges, thenv.d =
5(s,v).

ifv.d >u.d + w(u,v)
return FALSE
return TRUE

Why the outer loop runs |[V| — 1 times?

Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s) Edge ordering: (u,), (v,), (x,)), ,"), (s,7)

1 INITIALIZE-SINGLE-SOURCE (G, s)
2 fori =1to|G.V|—1

3 for each edge (u,v) € G.E

4 RELAX(u, v, w)

5 for each edge (u,v) € G.E
6

7

3

if v.d > u.d + w(u,v)
return FALSE
return TRUE

Loop invariant for the outer for loop:

For every vertex v, v.d < shortest-path length
from s to v involving at most i — 1 edges. Example Courtesy:

Prof. Jim Anderson

Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s) Edge ordering: (u,), (v,), (x,)), ,"), (s,7)

1 INITIALIZE-SINGLE-SOURCE (G, s)
2 fori =1to|G.V|—1

3 for each edge (u,v) € G.E

4 RELAX(u, v, w)

5 for each edge (u,v) € G.E
6

7

3

if v.d > u.d + w(u,v)
return FALSE
return TRUE

Loop invariant for the outer for loop:

For every vertex v, v.d < shortest-path length
from s to v involving at most i — 1 edges. Example Courtesy:

Prof. Jim Anderson

Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s) Edge ordering: (u,), (v,), (x,)), ,"), (s,7)

1 INITIALIZE-SINGLE-SOURCE (G, s)
2 fori =1to|G.V|—1

3 for each edge (u,v) € G.E

4 RELAX(u, v, w)

5 for each edge (u,v) € G.E
6

7

3

if v.d > u.d + w(u,v)
return FALSE
return TRUE

Loop invariant for the outer for loop:

For every vertex v, v.d < shortest-path length
from s to v involving at most i — 1 edges.

Example Courtesy: Prof. Jim Anderson

Red edges denote predecessor relations (v.)

Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s) Edge ordering: (u,), (v,), (x,)), ,"), (s,7)

1 INITIALIZE-SINGLE-SOURCE (G, s)
2 fori =1to|G.V|—1

3 for each edge (u,v) € G.E

4 RELAX(u, v, w)

5 for each edge (u,v) € G.E
6

7

3

if v.d > u.d + w(u,v)
return FALSE
return TRUE

Loop invariant for the outer for loop:

For every vertex v, v.d < shortest-path length
from s to v involving at most i — 1 edges.

Example Courtesy: Prof. Jim Anderson

Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s) Edge ordering: (u,), (v,), (x,)), ,"), (s,7)

1 INITIALIZE-SINGLE-SOURCE (G, s)
2 fori =1to|G.V|—1

3 for each edge (u,v) € G.E

4 RELAX(u, v, w)

5 for each edge (u,v) € G.E
6

7

3

ifv.d >u.d + w(u,v)
return FALSE
return TRUE

Loop invariant for the outer for loop:

For every vertex v, v.d < shortest-path length
from s to v involving at most i — 1 edges.

Example Courtesy: Prof. Jim Anderson

Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s) Edge ordering: (u,), (v,), (x,)), ,"), (s,7)

1 INITIALIZE-SINGLE-SOURCE (G, s)
2 fori =1to|G.V|—1

3 for each edge (u,v) € G.E

4 RELAX(u, v, w)

5 for each edge (u,v) € G.E
6

7

3

ifv.d >u.d + w(u,v)
return FALSE
return TRUE

Loop invariant for the outer for loop:

For every vertex v, v.d < shortest-path length
from s to v involving at most i — 1 edges.

Example Courtesy: Prof. Jim Anderson

Bellman-Ford Algorithm

The algorithm is based on dynamic programming ideas

d(v,i) = weight of the shortest path from s to v that has at most i hops.

d(v,i) = -+

—

Table (that is not
explicitly stored)
for the example

graph:

—

0 ,ifv=sandj =0

00 ,ifv+xsandj=0

min({d(w,i — 1) + w(u,v):v € Adj[u]} ud(v,i — 1)) , otherwise

S u V X y
0 }) i i :O fo Note: i-th row is the computed distance after the i-
1 0 6 o 7 o th iteration (depends on edge ordering in the CLRS
Y 0 6 4 7 2 pseudo-code, a better distance may be computed
3 0 2 4 7 2 early)
4 0 2 4 7 =2

Correctness

A Loop invariant for the outer for loop:

For every vertex v, if there is a shortest path from
s to v with at most i — 1 edges, thenv.d = §(s, v).

Initialization: i = 1, only §(s,s) = 0 involves at most O edges.

BELLMAN-FORD (G, w,)

1
2
3

4
5
6
7
8

INITIALIZE-SINGLE-SOURCE(G, $)
fori =1to|G.V|—1
for each edge (#,v) € G.E
RELAX(u, v, w)
for each edge (u,v) € G.E
if v.d >u.d + w(u,v)
return FALSE
return TRUE

IH: At the start of k-th iteration, v.d = 6(s,v) for all u € V that has a SP from s

involving at most k — 1 edges.

Maintenance: Assume that a SP from s to v has k edges.

Let u be the predecessor of v in this path. (So, a SP from s to u has k — 1 edges)

By IH, u.d = 6(s,u) holds at the start of k-th iteration.

Relaxing edge (u, v) produces v.d = 6(s,v) (Convergence property Lem. 22.14 in CLRS)

Correctness

Lemma 22.2: Assuming ho negative-weight cycles | INITIALIZE-SINGLE-SOURCE(G. 5)
reachable from s, v.d = 6(s,v) holds upon termination | 2 fori = 1to|G.V| -1

for all vertices v reachable from s. 3 for each edge (u,v) € G.E
RELAX(u, v, w)

4
5 for each edge (u,v) € G.E
6 if v.d >u.d + w(u,v)
7 return FALSE

8 return TRUE

- Since there is no negative-weight reachable cycle, any

shortest path from s to v has at most |V| — 1 edges.

* By the loop invariant, upon termination, if there is a shortest

path from s to v with at most |V| — 1 edges, thenv.d = §(s, v).

« So, for all reachable v,v.d = §(s, v).

Correctness

Theorem 22.4: If there is no negative-weight
cycles reachable from s, then return true,
otherwise return false.

e See from book

BELLMAN-FORD (G, w, s)

1
2
3

4
5
6
7
8

INITIALIZE-SINGLE-SOURCE(G, §)
fori = 1to |G.V|—1
for each edge (u,v) € G.E
RELAX(u, v, w)
for each edge (u,v) € G.E
ifv.d >u.d + w(u,v)
return FALSE
return TRUE

All-Pair Shortest Paths

Application: Computing distance table for a road atlas.
Atlanta Chicago Detroit ...

Atlanta | - 650 520
Chicago| 650 : 210
Detroit | 520 210 -

One Approach: Run single-source SP algorithm |V| times.

Negative Edges: Use Bellman-Ford.
Time Complexity:
O(V2E) = O(V*) for dense graphs

Nonnegative Edges: Use Dijkstra.
Time complexity:
O(V3) with linear array
O(VElg V) with binary heap

Better approach:
Floyd-Warshall: O(V3), allows negative edges.

Floyd-Warshall Algorithm

Dynamic programming algorithm

dg."') = weight of SP from vertex i to vertex j with all intermediate
vertices in the set {1, 2, ..., k}

Wij L ifk=0
4% = -

- min{d{{ Y, d5 D +dfs D}, otherwise

1 two \
possibilities
‘ Q}\\/\/\/‘Qk\v\/v‘@

.
all node in {1, ..., k-1} all node in {1, ..., k-1}

\

Floyd-Warshall Algorithm

e\ (n)

So, want to ComPUTe D(n) (d(n)) mln{d(k DodgTh +dy 1)} , otherwise

FLOYD-WARSHALL (W)

1 n = W.rows Exercise:

2 DO =Ww Run on example graph.
3 fork = 1ton

4 let DX = [d':;”) be a new n x n matrix

5 fori = 1ton

6 for j = 1ton

7 . df.'[f” — mm[d”‘ b u'”“_] - d‘é?_”}

8 return D Source: CLRS

Can reduce space from O(V3) to O(V?) — see Exercise 25.2-4.
Can also modify to compute predecessor matrix.

Thank You!

	Slide 1: COMP 550 Algorithm and Analysis Shortest Path Algorithms Based on CLRS Secs. 22 and 23
	Slide 2: Single-Source Shortest Path (SSSP)
	Slide 3: Single-Source Shortest Path (SSSP)
	Slide 4: Single-Source Shortest Path (SSSP)
	Slide 5: Optimal Substructure
	Slide 6: Optimal Substructure
	Slide 7: Negative-Weight Edges
	Slide 8: Negative-Weight Edges
	Slide 9: Negative-Weight Edges
	Slide 10: Negative-Weight Edges
	Slide 11: Cycles
	Slide 12: Relaxation
	Slide 13: Properties of Relaxation
	Slide 14: SSSP in DAG
	Slide 15: SSSP When Nonnegative-Weight Edge
	Slide 16: Dijkstra’s Algorithm
	Slide 17: Dijkstra’s Algorithm
	Slide 18: Dijkstra’s Algorithm
	Slide 19: Dijkstra’s Algorithm
	Slide 20: Dijkstra’s Algorithm
	Slide 21: Dijkstra’s Algorithm
	Slide 22: Correctness
	Slide 23: Correctness
	Slide 24: Correctness
	Slide 25: Running Time
	Slide 26: SSSP with Negative-Weight Edge
	Slide 27: SSSP with Negative-Weight Edge
	Slide 28: Bellman-Ford Algorithm
	Slide 29: Bellman-Ford Algorithm
	Slide 30: Bellman-Ford Algorithm
	Slide 31: Bellman-Ford Algorithm
	Slide 32: Bellman-Ford Algorithm
	Slide 33: Bellman-Ford Algorithm
	Slide 34: Bellman-Ford Algorithm
	Slide 35: Bellman-Ford Algorithm
	Slide 36: Correctness
	Slide 37: Correctness
	Slide 38: Correctness
	Slide 39: All-Pair Shortest Paths
	Slide 40: Floyd-Warshall Algorithm
	Slide 41: Floyd-Warshall Algorithm
	Slide 42: Thank You!

