

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

COMP 550 Algorithm and Analysis

Shortest Path Algorithms

Based on CLRS Secs. 22 and 23

Some slides are adapted from ones by Prof. Jim Anderson

Single-Source Shortest Path (SSSP)

- <u>Input</u>: A graph G = (V, E) and a source vertex $v \in V$
- <u>Output</u>: Shortest path from v to all other vertices

Source: Algorithm Design and Application by Goodrich and Tamassia

Single-Source Shortest Path (SSSP)

- <u>Input</u>: A graph G = (V, E) and a source vertex $v \in V$
- <u>Output</u>: Shortest path from v to all other vertices

- If G is an unweighted graph, then BFS solves the single-source shortest path problem.
- What about weighted graph? (this chapter)

Single-Source Shortest Path (SSSP)

- There can by different variations:
 - Single destination shortest path problem: Shortest path to v from all other vertices
 - Single-pair shortest path problem: Shortest path between a single pair of vertices
 - All pair shortest path problem: Shortest path between all pair of vertices
- All of the above can be solved if we can solve Single-Source version.

Optimal Substructure

- Does shortest-path problem have optimal substructure property?
 - Does shortest path from u to v contain shortest path between some other vertices?

• Yes!

<u>Lemma 22.1</u>. (Subpaths of shortest paths are shortest paths)

If $p = \langle v_0, v_1, v_2, ..., v_k \rangle$ is a shortest path from v_0 to v_k , then $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ with $0 \le i \le j \le k$ is a shortest path from v_i to v_j .

Exercise: Does longest path problem have optimal substructure property? (CLRS Sec 14.3)

Optimal Substructure

<u>Lemma 22.1</u>. (Subpaths of shortest paths are shortest paths)

If $p = \langle v_0, v_1, v_2, ..., v_k \rangle$ is a shortest path from v_0 to v_k , then $p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$ with $0 \le i \le j \le k$ is a shortest path from v_i to v_j .

- Proof: "cut and paste".
- Shortest path from v_0 to v_k looks like this

- If p_{ij} is not the shortest path between v_i and v_j , then assume p'_{ij} is the shortest path between them.
- Using p'_{ij} creates shorter path from v_0 to v_k , contradiction. (p is not shortest)

$$v_0 \qquad v_i \qquad v_j \qquad v_k$$

- Notation: $\delta(s, u) =$ Shortest distance from s to v
- $\delta(s,b) = w(s,a) + w(a,b) = 3 + (-4) = -1$

A graph with 11 vertices

- What is $\delta(s, c)$?
 - Many paths: $\langle s, c \rangle$, $\langle s, c, d, c \rangle$, $\langle s, c, d, c, d, c \rangle$, ...
 - Weight of the loop $\langle c, d, c \rangle$ is positive.
 - $\delta(s,c) = \text{Weight/cost of path } \langle s,c \rangle = 5$

A graph with 11 vertices

- What is $\delta(s, e)$?
 - Many paths: $\langle s, e \rangle$, $\langle s, e, d, e \rangle$, $\langle s, e, d, e, d, e \rangle$, ...
 - Weight of the loop $\langle c, d, e \rangle$ is negative.
 - $\delta(s, e) = -\infty$ (No shortest path from s to e)

A graph with 11 vertices

- $\delta(s, f) = \delta(s, g) = -\infty$ (Reachable via a negative-weight cycle)
- $\delta(s,h) = \delta(s,i) = \delta(s,j) = \infty$ (Not reachable from s)

A graph with 11 vertices

cles

- Shortest paths do not contain cycles
 - Negative—weight cycle \Rightarrow No shortest path
 - Positive-weight cycle \Rightarrow Removing cycle decreases path weight
 - O-weight cycle \Rightarrow Removing cycle maintains the path weight

Relaxation

- Shortest-path algorithms keep track of $v.\,d$ and $v.\,\pi$
 - v.d = shortest-path estimates, $v.\pi =$ predecessor vertex in shortest path
 - Will call the following two procedures in different algorithms

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 for each vertex $\nu \in G.V$
- 2 $\nu.d = \infty$

3
$$\nu.\pi = \text{NIL}$$

 $4 \ s.d = 0$

RELAX(u, v, w)**if** v.d > u.d + w(u, v)v.d = u.d + w(u, v) $v.\pi = u$

Properties of Relaxation

• Consider any algorithm in which v.d, and $v.\pi$ are first initialized by calling

Initialize(G, s) [s is the source], and are only changed by calling Relax. We have:

Lemma 22.11 (Upper bound property):

 $(\forall v :: v.d \ge \delta(s,v))$ is an invariant.

Corollary 22.12 (No-path property):

If there is no path from s to v, then $v.d = \infty$ is an invariant.

Lemma 22.14 (Convergence property): If $s \rightarrow u \rightarrow v$ is a SP and $u.d = \delta(s,u)$ prior to calling Relax(u,v,w), then $v.d = \delta(s,v)$ all time after Relax(u,v,w) is returned

More on CLRS

Exercise: Prove them (Proofs in Sec. 22.5)

SSSP in DAG

• Input graph is a directed acyclic graph

DAG-SHORTEST-PATHS (G, w, s)

- topologically sort the vertices of G1
- INITIALIZE-SINGLE-SOURCE(G, s) 2
- for each vertex *u*, taken in topologically sorted order 3
- for each vertex $v \in G.Adj[u]$ 4 5

 $\operatorname{RELAX}(u, v, w)$

SSSP When Nonnegative-Weight Edge

COMP550@UNC

- Input graph is a weighted graph with no negative-weight edge
- Dijkstra's Algorithm finds SSSPs for such graphs
 - Basically, generalized BFS
- Idea: When a node is the closest undiscovered node to the source vertex, we have found its shortest path

"What is the shortest way to travel from Rotterdam to Groningen, in general: from given city to given city. It is the algorithm for the shortest path, which I designed in about twenty minutes. One morning I was shopping in Amsterdam with my young fiancée, and tired, we sat down on the café terrace to drink a cup of coffee and I was just thinking about whether I could do this, and I then designed the algorithm for the shortest path....One of the reasons that it is so nice was that I designed it without pencil and paper.Eventually, that algorithm became to my great amazement, one of the cornerstones of my fame." -Edsger Dijkstra (Comm. Of ACM 2001) 15

	Dijkstra's Algorithm
	INITIALIZE-SINGLE-SOURCE(G, s)RELAX (u, v, w) 1for each vertex $v \in G.V$ 12 $v.d = \infty$ 13 $v.\pi = NIL$ 24 $s.d = 0$ $v.\pi = u$
All vertices are inserted in S is the head of Q now	Q DIJKSTRA(G, w, s) 1 INITIALIZE-SINGLE-SOURCE(G, s) 2 $S = \emptyset$ 3 $Q = \emptyset$ 4 for each vertex $u \in G.V$ 5 INSERT(Q, u) Q: Min Priority Queue (order by $v.d$), contains unexplored nodes
Greedy strategy : Extract the head of <i>Q</i> (its shortest distance has been found)	6 while $Q \neq \emptyset$ 7 $u = \text{EXTRACT-MIN}(Q)$ 8 $S = S \cup \{u\}$ S: vertices where we know we've found the shortest path. (Like gray nodes in BFS)
Update any shorter distance via node u	9 for each vertex v in $G.Adj[u]$ 10 RELAX (u, v, w) 11 if the call of RELAX decreased $v.d$ 12 DECREASE-KEY $(Q, v, v.d)$ Source: CLRS

Not explored yet Currently being explored Already explored

- INITIALIZE-SINGLE-SOURCE(G, s)
- $S = \emptyset$ 2
- $O = \emptyset$ 3
- for each vertex $u \in G.V$ 4
- INSERT(Q, u)5
- while $Q \neq \emptyset$ 6
- u = EXTRACT-MIN(Q)7
- $S = S \cup \{u\}$ 8
- for each vertex v in G.Adj[u]9
- $\operatorname{RELAX}(u, v, w)$ 10
- if the call of RELAX decreased v.d11
- DECREASE-KEY(Q, v, v.d)12

Example Courtesy: Prof. Jim Anderson

Not explored yet Currently being explored Already explored

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- 2 $S = \emptyset$
- 3 $Q = \emptyset$
- 4 **for** each vertex $u \in G.V$
- 5 INSERT(Q, u)
- 6 while $Q \neq \emptyset$
- 7 u = EXTRACT-MIN(Q)
- 8 $S = S \cup \{u\}$
- 9 **for** each vertex v in G.Adj[u]
- 10 $\operatorname{RELAX}(u, v, w)$
- 11 **if** the call of RELAX decreased v.d
- 12 DECREASE-KEY(Q, v, v.d)

Not explored yet Currently being explored Already explored

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- 2 $S = \emptyset$
- 3 $Q = \emptyset$
- 4 **for** each vertex $u \in G.V$
- 5 INSERT(Q, u)
- 6 while $Q \neq \emptyset$
- 7 u = EXTRACT-MIN(Q)
- 8 $S = S \cup \{u\}$
- 9 **for** each vertex v in G.Adj[u]
- 10 $\operatorname{RELAX}(u, v, w)$
- 11 **if** the call of RELAX decreased v.d
- 12 DECREASE-KEY(Q, v, v.d)

Not explored yet Currently being explored Already explored

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- 2 $S = \emptyset$
- 3 $Q = \emptyset$
- 4 **for** each vertex $u \in G.V$
- 5 INSERT(Q, u)
- 6 while $Q \neq \emptyset$
- 7 u = EXTRACT-MIN(Q)
- 8 $S = S \cup \{u\}$
- 9 **for** each vertex v in G.Adj[u]
- 10 $\operatorname{RELAX}(u, v, w)$
- 11 **if** the call of RELAX decreased v.d
- 12 DECREASE-KEY(Q, v, v.d)

Not explored yet Currently being explored Already explored

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- 2 $S = \emptyset$
- 3 $Q = \emptyset$
- 4 **for** each vertex $u \in G.V$
- 5 INSERT(Q, u)
- 6 while $Q \neq \emptyset$
- 7 u = EXTRACT-MIN(Q)
- 8 $S = S \cup \{u\}$
- 9 **for** each vertex v in G.Adj[u]
- 10 $\operatorname{RELAX}(u, v, w)$
- 11 **if** the call of RELAX decreased v.d
- 12 DECREASE-KEY(Q, v, v.d)

<u>Theorem 24.6</u>: Upon termination, $u.d = \delta(s, u)$ for all $u \in V$. (assuming non-negative weights).

Loop invariant: At the start of each iteration of the while

loop, $v.d = \delta(s, v)$ for all $v \in S$. (S = V when terminate)

- Initialization: $S = \emptyset$ (Trivial)
- <u>IH</u>: At the start of k-th iteration, $u.d = \delta(s, u)$ for all $u \in V$.
- Consider the k-th iteration and show that the LI holds at the start $\frac{10}{12}$ of (k+1)-st iteration
 - The k-th iteration inserts a new vertex to S
 - Need to show that the LI holds for the new vertex

```
DIJKSTRA(G, w, s)
 1 INITIALIZE-SINGLE-SOURCE(G, s)
    S = \emptyset
    Q = \emptyset
    for each vertex u \in G.V
         INSERT(Q, u)
    while Q \neq \emptyset
 6
         u = \text{EXTRACT-MIN}(Q)
         S = S \cup \{u\}
8
         for each vertex v in G.Adj[u]
9
              \operatorname{RELAX}(u, v, w)
10
              if the call of RELAX decreased v.d
                   DECREASE-KEY(Q, v, v.d)
12
```

<u>Theorem 24.6</u>: Upon termination, $u.d = \delta(s, u)$ for all $u \in V$. (assuming non-negative weights).

Maintenance (Inductive Step):

- *u* is extracted from Q = V S (our goal is to show $u.d = \delta(s, u)$)
- If no s to u path exists, then $u.d = \delta(s, u) = \infty$
- Otherwise, let $\langle s, \dots, x, y, \dots u \rangle$ be a shortest path where
 - y is the first vertex in the path that is NOT is S
- $\delta(s, y) \leq \delta(s, u)$, because no negative edge
- $u.d \le y.d$, because u is just extracted from Q, but y is not.
- Using the upper-bound property,

 $\delta(s, y) \le \delta(s, u) \le u.d \le y.d \tag{1}$

DIJKSTRA(G, w, s)INITIALIZE-SINGLE-SOURCE(G, s) $S = \emptyset$ $O = \emptyset$ for each vertex $u \in G$. V INSERT(Q, u)5 while $Q \neq \emptyset$ 6 u = EXTRACT-MIN(Q) $S = S \cup \{u\}$ 8 for each vertex v in G.Adj[u]9 $\operatorname{RELAX}(u, v, w)$ 10

11

12

if the call of RELAX decreased v.d

DECREASE-KEY(Q, v, v.d)

<u>Theorem 24.6</u>: Upon termination, $u.d = \delta(s, u)$ for all $u \in V$. (assuming non-negative weights).

Maintenance (Inductive Step):

- $x. d = \delta(s, x)$, because $x \in S$ (by Inductive Hypothesis)
- edge (x, y) was relaxed during the loop that added x to S
- Since (x, y) is in a SP from s to y and (x, y) was relaxed when $\int_{10}^{9} x d = \delta(s, x), y d$ gets the value of $\delta(s, y)$ at that time (convergence property: Lemma 22.14).
- So, when u is extracted from Q, y. $d = \delta(s, y)$ already holds.
- From (1), we get $u.d = \delta(s, u)$

DIJKSTRA(G, w, s)INITIALIZE-SINGLE-SOURCE(G, s) $S = \emptyset$ $O = \emptyset$ for each vertex $u \in G.V$ INSERT(Q, u)while $Q \neq \emptyset$ 6 u = EXTRACT-MIN(Q) $S = S \cup \{u\}$ 8 for each vertex v in G.Adj[u] $\operatorname{RELAX}(u, v, w)$ 10 if the call of RELAX decreased v.d11 DECREASE-KEY(Q, v, v.d)12

Running Time

		Insert		E	Extract-Max Decrease-Key T		Decrease-Key			Total
	# calls	Running time per call	Total runni ng time	# calls	Running time per call	Total running time	# calls	Running time per call	Total runnin g time	Running Time
Node- indexed array	0(V)	0(1)	0(V)	0(V)	0(V)	$O(V^2)$	O(E)	0(1)	0(E)	$O(V^2)$
Binary Heap	Use B inst Ir	uild-Heap ead of <i>n</i> nserts	0(V)	0(V)	$O(\lg V)$	$O(V \lg V)$	O(E)	$O(\lg V)$	$O(E \lg V)$	$O((V + E) \lg V)$
Running time with binary heap is $O((V + E) \lg V)$, which is $O(E \lg V)$ if $E = \Omega(V)$ DIJKSTRA (G, w, s) 1 INITIALIZE-SINGLE-SOURCE 2 $S = \emptyset$ 3 $Q = \emptyset$ 4 for each vertex $u \in G.V$ 5 INSERT (Q, u) 6 while $Q \neq \emptyset$ 7 $u = \text{EXTRACT-MIN}(Q)$ 8 $S = S \cup \{u\}$ 9 for each vertex $u \in G.V$ 9 $S = S \cup \{u\}$ 9 for each vertex $u \in G.V$ 9 $S = S \cup \{u\}$ 9 $S = S \cup \{u\}$							-SOURCE (G, s) G.V MIN (Q)			

9

10

11

12

for each vertex v in G.Adj[u]

if the call of RELAX decreased v.d

DECREASE-KEY(Q, v, v.d)

 $\operatorname{RELAX}(u, v, w)$

SSSP with Negative-Weight Edge

• Dijkstra's algorithm fails when there are negative edges

• Dijkstra's algorithm discovers w via v. (w. d is set to 2).

SSSP with Negative-Weight Edge

- Bellman-Ford Algorithm
 - Can handle negative-weight edges and "detect" <u>reachable</u> negative-weight

```
cycles.
                       BELLMAN-FORD(G, w, s)
                           INITIALIZE-SINGLE-SOURCE(G, s)
                          for i = 1 to |G.V| - 1
                       2
                                                                Running time: O(V \cdot E)
                               for each edge (u, v) \in G.E
Negative cycle exists 4
                                    \operatorname{RELAX}(u, v, w)
                           for each edge (u, v) \in G.E
                        5
                               if v.d > u.d + w(u, v)
                                                                   Negative cycle
                        6
  No negative cycle
                                                                   detection
                                    return FALSE
                        7
                           return TRUE
                       8
                                                             Source: CLRS
                                        COMP550@UNC
                                                                                  27
```

BELLMAN-FORD(G, w, s)

- INITIALIZE-SINGLE-SOURCE(G, s) 1
- for i = 1 to |G.V| 12
 - for each edge $(u, v) \in G.E$ $\operatorname{RELAX}(u, v, w)$
- for each edge $(u, v) \in G.E$ 5
- **if** v.d > u.d + w(u, v)6 return FALSE

return TRUE

3

4

7

Loop invariant for the outer **for** loop:

For every vertex $v, v.d \leq$ shortest-path length from s to v involving at most i - 1 edges.

Another Loop invariant for the outer **for** loop:

For every vertex v, if there is a shortest path from s to v with at most i - 1 edges, then v.d = $\delta(s, v)$.

Why the outer loop runs |V| - 1 times?

BELLMAN-FORD(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- 2 for i = 1 to |G.V| 1
- 3 for each edge $(u, v) \in G.E$
- 4 $\operatorname{RELAX}(u, v, w)$
- 5 for each edge $(u, v) \in G.E$
- 6 **if** v.d > u.d + w(u, v)
 - return FALSE

8 **return** TRUE

Loop invariant for the outer **for** loop:

Example Courtesy: Prof. Jim Anderson

BELLMAN-FORD(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- 2 for i = 1 to |G.V| 1
- 3 for each edge $(u, v) \in G.E$
- 4 $\operatorname{RELAX}(u, v, w)$
- 5 for each edge $(u, v) \in G.E$
- 6 **if** v.d > u.d + w(u, v)
 - return FALSE

8 **return** TRUE

Loop invariant for the outer **for** loop:

Example Courtesy: Prof. Jim Anderson

BELLMAN-FORD(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- 2 **for** i = 1 **to** |G.V| 1
- 3 for each edge $(u, v) \in G.E$
- 4 $\operatorname{RELAX}(u, v, w)$
- 5 for each edge $(u, v) \in G.E$
- 6 **if** v.d > u.d + w(u, v)
 - return FALSE

8 **return** TRUE

Loop invariant for the outer **for** loop:

For every vertex $v, v.d \le$ shortest-path length from s to v involving at most i - 1 edges.

Example Courtesy: Prof. Jim Anderson

Red edges denote predecessor relations ($v.\pi$)

BELLMAN-FORD(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- 2 for i = 1 to |G.V| 1
- 3 for each edge $(u, v) \in G.E$
- 4 $\operatorname{RELAX}(u, v, w)$
- 5 for each edge $(u, v) \in G.E$
- 6 **if** v.d > u.d + w(u, v)
 - return FALSE

8 **return** TRUE

Loop invariant for the outer **for** loop:

Example Courtesy: Prof. Jim Anderson

BELLMAN-FORD(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- 2 for i = 1 to |G.V| 1
- 3 for each edge $(u, v) \in G.E$
- 4 $\operatorname{RELAX}(u, v, w)$
- 5 for each edge $(u, v) \in G.E$
- 6 **if** v.d > u.d + w(u, v)
 - return FALSE

8 **return** TRUE

Loop invariant for the outer **for** loop:

Example Courtesy: Prof. Jim Anderson

BELLMAN-FORD(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE(G, s)
- 2 for i = 1 to |G.V| 1
- 3 for each edge $(u, v) \in G.E$
- 4 $\operatorname{RELAX}(u, v, w)$
- 5 for each edge $(u, v) \in G.E$
- 6 **if** v.d > u.d + w(u, v)
 - return FALSE

8 **return** TRUE

Loop invariant for the outer **for** loop:

Example Courtesy: Prof. Jim Anderson

The algorithm is based on dynamic programming ideas

00 00 00

8

4

7 ∞

7 2 7 2

d(v,i) = weight of the shortest path from s to v that has at most i hops.

$$\int_{v,i}^{0} \int_{v=s}^{v=s} and j = 0$$

$$\int_{v,i}^{v=s} if v \neq s and j = 0$$

 $\min(\{d(u, i-1) + w(u, v): v \in Adj[u]\} \cup d(v, i-1)) , \text{ otherwise}$

		D		
		1	2	
Table (that is not	0	0	00	
explicitly stored)	1	0	6	
for the example	2	0	6	
araph:	3	0	2	
	4	0	2	

C

<u>Note</u>: i-th row is the computed distance after the ith iteration (depends on edge ordering in the CLRS pseudo-code, a better distance may be computed early)

A Loop invariant for the outer **for** loop:

For every vertex v, if there is a shortest path from s to v with at most i - 1 edges, then $v d = \delta(s, v)$.

<u>Initialization</u>: i = 1, only $\delta(s, s) = 0$ involves at most 0 edges.

BELLMAN-FORD(G, w, s)

INITIALIZE-SINGLE-SOURCE(G, s)

2 **for** i = 1 **to** |G.V| - 1

for each edge
$$(u, v) \in G.E$$

 $\operatorname{RELAX}(u, v, w)$

for each edge
$$(u, v) \in G.E$$

if
$$v.d > u.d + w(u, v)$$

return FALSE

```
return TRUE
```

3

<u>IH</u>: At the start of k-th iteration, $v.d = \delta(s, v)$ for all $u \in V$ that has a SP from s involving at most k - 1 edges.

<u>Maintenance</u>: Assume that a SP from s to v has k edges.

Let u be the predecessor of v in this path. (So, a SP from s to u has k - 1 edges)

By IH, $u.d = \delta(s, u)$ holds at the start of k-th iteration.

Relaxing edge (u, v) produces $v.d = \delta(s, v)$ (Convergence property Lem. 22.14 in CLRS)

Lemma 22.2: Assuming no negative-weight cycles reachable from $s, v.d = \delta(s, v)$ holds upon termination for all vertices v reachable from s.

- Since there is no negative-weight reachable cycle, any shortest path from s to v has at most |V| 1 edges.
- By the loop invariant, upon termination, if there is a shortest path from s to v with at most |V| 1 edges, then $v \cdot d = \delta(s, v)$.
- So, for all reachable $v, v.d = \delta(s, v)$.

```
BELLMAN-FORD(G, w, s)
```

1 INITIALIZE-SINGLE-SOURCE
$$(G, s)$$

2 **for**
$$i = 1$$
 to $|G.V| - 1$

for each edge
$$(u, v) \in G.E$$

$$\operatorname{RELAX}(u, v, w)$$

5 for each edge
$$(u, v) \in G.E$$

if
$$v.d > u.d + w(u, v)$$

<u>Theorem 22.4</u>: If there is no negative-weight cycles reachable from *s*, then return **true**, otherwise return **false**.

See from book

BELLMAN-FORD (G, w, s)1INITIALIZE-SINGLE-SOURCE (G, s)2for i = 1 to |G.V| - 13for each edge $(u, v) \in G.E$ 4RELAX(u, v, w)5for each edge $(u, v) \in G.E$ 6if v.d > u.d + w(u, v)7return FALSE

8 return TRUE

All-Pair Shortest Paths

<u>Application</u>: Computing distance table for a road atlas.

	Atlanta	Chicago	Detroit	
Atlanta	-	650	520	
Chicago	650	-	210	
Detroit	520	210	-	
•				

One Approach: Run single-source SP algorithm |V| times.

Nonnegative Edges: Use Dijkstra.

Time complexity: O(V³) with linear array O(VElg V) with binary heap Negative Edges: Use Bellman-Ford. Time Complexity: O(V²E) = O(V⁴) for dense graphs

Better approach:

Floyd-Warshall: O(V³), allows negative edges.

Floyd-Warshall Algorithm

Dynamic programming algorithm

 $d_{ij}^{(k)}$ = weight of SP from vertex i to vertex j with all intermediate vertices in the set {1, 2, ..., k}

Floyd-Warshall Algorithm

 $\delta(i,j) = d_{ij}^{(n)}$ So, want to compute $D^{(n)} = (d_{ij}^{(n)})$.

 $d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{, if } k = 0\\ \\ \min\left\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right\} & \text{, otherwise} \end{cases}$

FLOYD-WARSHALL(W)

1 n = W.rows2 $D^{(0)} = W$ 3 for k = 1 to n4 let $D^{(k)} = (d_{ij}^{(k)})$ be a new $n \times n$ matrix 5 for i = 1 to n6 for j = 1 to n7 $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$ 8 return $D^{(n)}$ Source: CLRS

Can reduce space from $O(V^3)$ to $O(V^2)$ — see Exercise 25.2-4. Can also modify to compute predecessor matrix.

Thank You!