
COMP 550
Algorithm and Analysis

Shortest Path
Algorithms

Based on CLRS Secs. 22 and 23

Some slides are adapted from ones by Prof. Jim Anderson

Single-Source Shortest Path (SSSP)
• Input: A graph 𝐺 = (𝑉, 𝐸) and a source vertex 𝑣 ∈ 𝑉

• Output: Shortest path from 𝑣 to all other vertices

COMP550@UNC 2

Source: Algorithm Design and Application by Goodrich and Tamassia

Single-Source Shortest Path (SSSP)
• Input: A graph 𝐺 = (𝑉, 𝐸) and a source vertex 𝑣 ∈ 𝑉

• Output: Shortest path from 𝑣 to all other vertices

• If 𝐺 is an unweighted graph, then BFS solves the single-source

shortest path problem.

• What about weighted graph? (this chapter)

COMP550@UNC 3

Single-Source Shortest Path (SSSP)
• There can by different variations:

• Single destination shortest path problem: Shortest path to 𝑣 from

all other vertices

• Single-pair shortest path problem: Shortest path between a single

pair of vertices

• All pair shortest path problem: Shortest path between all pair of

vertices

• All of the above can be solved if we can solve Single-Source

version.
COMP550@UNC 4

Optimal Substructure

COMP550@UNC 5

• Does shortest-path problem have optimal substructure property?

• Does shortest path from 𝑢 to 𝑣 contain shortest path between some

other vertices?

• Yes!

Lemma 22.1. (Subpaths of shortest paths are shortest paths)

If 𝑝 = ⟨𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑘⟩ is a shortest path from 𝑣0 to 𝑣𝑘, then 𝑝𝑖𝑗 = ⟨𝑣𝑖 , 𝑣𝑖+1, … , 𝑣𝑗⟩ with
0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 is a shortest path from 𝑣𝑖 to 𝑣𝑗.

Exercise: Does longest path problem have optimal substructure property? (CLRS Sec 14.3)

• Proof: ‘’cut and paste’’.

• Shortest path from 𝑣0 to 𝑣𝑘 looks like this

• If 𝑝𝑖𝑗 is not the shortest path between 𝑣𝑖 and 𝑣𝑗, then assume 𝑝𝑖𝑗
′ is the shortest

path between them.

• Using 𝑝𝑖𝑗
′ creates shorter path from 𝑣0 to 𝑣𝑘 , contradiction. (𝑝 is not shortest)

Optimal Substructure

COMP550@UNC 6

Lemma 22.1. (Subpaths of shortest paths are shortest paths)

If 𝑝 = ⟨𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑘⟩ is a shortest path from 𝑣0 to 𝑣𝑘, then 𝑝𝑖𝑗 = ⟨𝑣𝑖 , 𝑣𝑖+1, … , 𝑣𝑗⟩ with
0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 is a shortest path from 𝑣𝑖 to 𝑣𝑗.

𝒗𝟎 𝒗𝒊 𝒗𝒋 𝒗𝒌

𝑝0𝑖 𝑝𝑖𝑗 𝑝𝑗𝑘

𝒗𝟎 𝒗𝒊 𝒗𝒋 𝒗𝒌

𝑝0𝑖 𝑝′𝑖𝑗 𝑝𝑗𝑘

Negative-Weight Edges

COMP550@UNC 7

• Notation: 𝛿 𝑠, 𝑢 = Shortest distance from 𝑠 to 𝑣

• 𝛿 𝑠, 𝑏 = 𝑤 𝑠, 𝑎 + 𝑤 𝑎, 𝑏 = 3 + −4 = −1

A graph with 11 vertices

Source: CLRS

Negative-Weight Edges

COMP550@UNC 8

• What is 𝛿 𝑠, 𝑐 ?
• Many paths: 𝑠, 𝑐 , ⟨𝑠, 𝑐, 𝑑, 𝑐⟩, 𝑠, 𝑐, 𝑑, 𝑐, 𝑑, 𝑐 , …

• Weight of the loop ⟨𝑐, 𝑑, 𝑐⟩ is positive.

• 𝛿 𝑠, 𝑐 = Weight/cost of path 𝑠, 𝑐 = 5

A graph with 11 vertices

Source: CLRS

Negative-Weight Edges

COMP550@UNC 9

• What is 𝛿 𝑠, 𝑒 ?
• Many paths: 𝑠, 𝑒 , ⟨𝑠, 𝑒, 𝑑, 𝑒⟩, 𝑠, 𝑒, 𝑑, 𝑒, 𝑑, 𝑒 , …

• Weight of the loop ⟨𝑐, 𝑑, 𝑒⟩ is negative.

• 𝛿 𝑠, 𝑒 = −∞ (No shortest path from 𝑠 to 𝑒)

A graph with 11 vertices

Source: CLRS

Negative-Weight Edges

COMP550@UNC 10

• 𝛿 𝑠, 𝑓 = 𝛿 𝑠, 𝑔 = −∞ (Reachable via a negative-weight cycle)

• 𝛿 𝑠, ℎ = 𝛿 𝑠, 𝑖 = 𝛿 𝑠, 𝑗 = ∞ (Not reachable from 𝑠)

A graph with 11 vertices

Source: CLRS

Cycles

COMP550@UNC 11

• Shortest paths do not contain cycles

• Negative−weight cycle ⇒ No shortest path

• Positive-weight cycle ⇒ Removing cycle decreases path weight

• 0-weight cycle ⇒ Removing cycle maintains the path weight

𝒖 𝒙 𝒗

This represents a cycle not a self-loop

• Shortest-path algorithms keep track of 𝑣. 𝑑 and 𝑣. 𝜋

• 𝑣. 𝑑 = shortest-path estimates, 𝑣. 𝜋 = predecessor vertex in shortest path

• Will call the following two procedures in different algorithms

Relaxation

COMP550@UNC 12

(𝑢, 𝑣) = An edge, 𝑤 = weight function

Relax edge 𝑢, 𝑣 : two cases

Source: CLRS

• Consider any algorithm in which 𝑣. 𝑑, and 𝑣. 𝜋 are first initialized by calling

Initialize(𝐺, 𝑠) [𝑠 is the source], and are only changed by calling Relax. We have:

Properties of Relaxation

COMP550@UNC 13

Lemma 22.11 (Upper bound property):
(𝑣 :: 𝑣. 𝑑 𝛿(𝑠, 𝑣)) is an invariant.

Corollary 22.12 (No-path property):
If there is no path from 𝑠 to 𝑣, then 𝑣. 𝑑 = ∞ is an invariant.

More on CLRS

Exercise: Prove them (Proofs in Sec. 22.5)

Lemma 22.14 (Convergence property):
If 𝑠 𝑢 ⟶ 𝑣 is a SP and 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) prior to calling Relax(u,v,w),

then 𝑣. 𝑑 = 𝛿(𝑠, 𝑣) all time after Relax(u,v,w) is returned

SSSP in DAG

COMP550@UNC 14

• Input graph is a directed acyclic graph

Running time: Θ(𝑉 + 𝐸)

Source: CLRS

SSSP When Nonnegative-Weight Edge

COMP550@UNC 15

• Input graph is a weighted graph with

no negative-weight edge

• Dijkstra’s Algorithm finds SSSPs for

such graphs

• Basically, generalized BFS

• Idea: When a node is the closest

undiscovered node to the source vertex,

we have found its shortest path

“What is the shortest way to travel from Rotterdam to

Groningen, in general: from given city to given city. It

is the algorithm for the shortest path, which I

designed in about twenty minutes. One morning I was

shopping in Amsterdam with my young fiancée, and

tired, we sat down on the café terrace to drink a cup

of coffee and I was just thinking about whether I could

do this, and I then designed the algorithm for the

shortest path.…One of the reasons that it is so nice

was that I designed it without pencil and paper.

….Eventually, that algorithm became to my great

amazement, one of the cornerstones of my fame.”

-Edsger Dijkstra (Comm. Of ACM 2001)

Dijkstra’s Algorithm

COMP550@UNC 16

𝑆: vertices where we know we’ve
found the shortest path. (Like gray
nodes in BFS)

𝑄: Min Priority Queue (order by 𝑣. 𝑑),
contains unexplored nodes

All vertices are inserted in 𝑄

𝑆 is the head of 𝑄 now

Greedy strategy: Extract
the head of 𝑄 (its shortest
distance has been found)

Update any shorter distance
via node 𝑢

Source: CLRS

Dijkstra’s Algorithm

COMP550@UNC 17

Example Courtesy: Prof. Jim Anderson

Not explored yet Currently being explored Already explored

Dijkstra’s Algorithm

COMP550@UNC 18

Example Courtesy: Prof. Jim Anderson

Not explored yet Currently being explored Already explored

Dijkstra’s Algorithm

COMP550@UNC 19

Example Courtesy: Prof. Jim Anderson

Not explored yet Currently being explored Already explored

Dijkstra’s Algorithm

COMP550@UNC 20

Example Courtesy: Prof. Jim Anderson

Not explored yet Currently being explored Already explored

Dijkstra’s Algorithm

COMP550@UNC 21

Example Courtesy: Prof. Jim Anderson

Not explored yet Currently being explored Already explored

Correctness

COMP550@UNC 22

Loop invariant: At the start of each iteration of the while

loop, 𝑣. 𝑑 = 𝛿(𝑠, 𝑣) for all 𝑣 ∈ 𝑆. (𝑆 = 𝑉 when terminate)

• Initialization: 𝑆 = ∅ (Trivial)

• IH: At the start of 𝑘-th iteration, 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) for all 𝑢 ∈ 𝑉.

• Consider the k-th iteration and show that the LI holds at the start

of (k+1)-st iteration

Theorem 24.6: Upon termination, 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) for all 𝑢 ∈ 𝑉. (assuming non-
negative weights).

• The 𝑘-th iteration inserts a new vertex to 𝑆

• Need to show that the LI holds for the new vertex

Correctness

COMP550@UNC 23

Maintenance (Inductive Step):

• 𝑢 is extracted from 𝑄 = 𝑉 − 𝑆 (our goal is to show 𝑢. 𝑑 = 𝛿(𝑠, 𝑢))

• If no 𝑠 to 𝑢 path exists, then 𝑢. 𝑑 = 𝛿 𝑠, 𝑢 = ∞

• Otherwise, let ⟨𝑠, … , 𝑥, 𝑦, … 𝑢⟩ be a shortest path where

• 𝑦 is the first vertex in the path that is NOT is 𝑆

• 𝛿 𝑠, 𝑦 ≤ 𝛿 𝑠, 𝑢 , because no negative edge

• 𝑢. 𝑑 ≤ 𝑦. 𝑑, because 𝑢 is just extracted from 𝑄, but 𝑦 is not.

• Using the upper-bound property,

𝛿 𝑠, 𝑦 ≤ 𝛿 𝑠, 𝑢 ≤ 𝑢. 𝑑 ≤ 𝑦. 𝑑 (1)

Theorem 24.6: Upon termination, 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) for all 𝑢 ∈ 𝑉. (assuming non-
negative weights).

Source: CLRS

Correctness

COMP550@UNC 24

Maintenance (Inductive Step):

• 𝑥. 𝑑 = 𝛿(𝑠, 𝑥), because 𝑥 ∈ 𝑆 (by Inductive Hypothesis)

• edge (𝑥, 𝑦) was relaxed during the loop that added 𝑥 to 𝑆

• Since (𝑥, 𝑦) is in a SP from 𝑠 to 𝑦 and (𝑥, 𝑦) was relaxed when

𝑥. 𝑑 = 𝛿 𝑠, 𝑥 , 𝑦. 𝑑 gets the value of 𝛿 𝑠, 𝑦 at that time

(convergence property: Lemma 22.14).

• So, when 𝑢 is extracted from 𝑄, 𝑦. 𝑑 = 𝛿(𝑠, 𝑦) already holds.

• From (1), we get 𝑢. 𝑑 = 𝛿(𝑠, 𝑢)

Theorem 24.6: Upon termination, 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) for all 𝑢 ∈ 𝑉. (assuming non-
negative weights).

Source: CLRS

Insert Extract-Max Decrease-Key Total
Running
Time

#
calls

Running
time per

call

Total
runni

ng
time

#
calls

Running
time per

call

Total
running

time

#
calls

Running
time per

call

Total
runnin
g time

Node-
indexed
array

𝑂(𝑉) 𝑂(1) 𝑂(𝑉) 𝑂(𝑉) 𝑂(𝑉) 𝑂(𝑉2) 𝑂(𝐸) 𝑂(1) 𝑂(𝐸) 𝑂(𝑉2)

Binary
Heap

Use Build-Heap
instead of 𝑛

Inserts

𝑂(𝑉) 𝑂(𝑉) 𝑂(lg 𝑉) 𝑂(𝑉 lg 𝑉) 𝑂(𝐸) 𝑂(lg 𝑉) 𝑂(𝐸 lg 𝑉) 𝑂((
)
𝑉

+ 𝐸 lg 𝑉)

Running Time

COMP550@UNC 25

Running time with binary heap is 𝑂(𝑉 + 𝐸 lg 𝑉), which is

𝑂(𝐸 lg 𝑉) if 𝐸 = Ω(𝑉)

SSSP with Negative-Weight Edge

COMP550@UNC 26

• Dijkstra’s algorithm fails when there are negative edges

• Dijkstra’s algorithm discovers 𝑤 via 𝑣. (𝑤. 𝑑 is set to 2).

s

v

u

w

6

-61

1

SSSP with Negative-Weight Edge

COMP550@UNC 27

• Bellman-Ford Algorithm

• Can handle negative-weight edges and “detect” reachable negative-weight

cycles.

Negative cycle
detection

Negative cycle exists

No negative cycle

Running time:𝑂(𝑉 ⋅ 𝐸)

Source: CLRS

Bellman-Ford Algorithm

COMP550@UNC 28

Loop invariant for the outer for loop:

For every vertex 𝑣, 𝑣. 𝑑 ≤ shortest-path length
from 𝑠 to 𝑣 involving at most 𝑖 − 1 edges.

Why the outer loop runs 𝑉 − 1 times?

Another Loop invariant for the outer for loop:

For every vertex 𝑣, if there is a shortest path
from s to v with at most 𝑖 − 1 edges, then 𝑣. 𝑑 =
𝛿 𝑠, 𝑣 .

Bellman-Ford Algorithm

COMP550@UNC 29

Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)

Bellman-Ford Algorithm

COMP550@UNC 30

Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)

Bellman-Ford Algorithm

COMP550@UNC 31

Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)

Red edges denote predecessor relations (𝑣. 𝜋)

Bellman-Ford Algorithm

COMP550@UNC 32

Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)

Bellman-Ford Algorithm

COMP550@UNC 33

Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)

Bellman-Ford Algorithm

COMP550@UNC 34

Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)

Bellman-Ford Algorithm

COMP550@UNC 35

The algorithm is based on dynamic programming ideas

𝑑(𝑣, 𝑖) = weight of the shortest path from 𝑠 to 𝑣 that has at most 𝑖 hops.

𝑑 𝑣, 𝑖 =

0

∞

min(𝑑 𝑢, 𝑖 − 1 + 𝑤 𝑢, 𝑣 : 𝑣 ∈ 𝐴𝑑𝑗 𝑢 ∪ 𝑑(𝑣, 𝑖 − 1))

, if 𝑣 = 𝑠 and 𝑗 = 0

, if 𝑣 ≠ 𝑠 and 𝑗 = 0

, otherwise

Table (that is not
explicitly stored)
for the example
graph:

Note: i-th row is the computed distance after the i-
th iteration (depends on edge ordering in the CLRS
pseudo-code, a better distance may be computed
early)

s

Correctness

COMP550@UNC 36

A Loop invariant for the outer for loop:

For every vertex 𝑣, if there is a shortest path from
𝑠 to 𝑣 with at most 𝑖 − 1 edges, then 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 .

Initialization: 𝑖 = 1, only 𝛿 𝑠, 𝑠 = 0 involves at most 0 edges.

IH: At the start of 𝑘-th iteration, 𝑣. 𝑑 = 𝛿(𝑠, 𝑣) for all 𝑢 ∈ 𝑉 that has a SP from 𝑠

involving at most 𝑘 − 1 edges.

Maintenance: Assume that a SP from 𝑠 to 𝑣 has 𝑘 edges.

Let 𝑢 be the predecessor of 𝑣 in this path. (So, a SP from 𝑠 to 𝑢 has 𝑘 − 1 edges)

By IH, 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) holds at the start of k-th iteration.

Relaxing edge (𝑢, 𝑣) produces 𝑣. 𝑑 = 𝛿(𝑠, 𝑣) (Convergence property Lem. 22.14 in CLRS)

Correctness

COMP550@UNC 37

Lemma 22.2: Assuming no negative-weight cycles
reachable from 𝑠, 𝑣. 𝑑 = 𝛿(𝑠, 𝑣) holds upon termination
for all vertices v reachable from s.

• Since there is no negative-weight reachable cycle, any

shortest path from 𝑠 to 𝑣 has at most 𝑉 − 1 edges.

• By the loop invariant, upon termination, if there is a shortest

path from 𝑠 to 𝑣 with at most |𝑉| − 1 edges, then 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 .

• So, for all reachable 𝑣, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 .

Correctness

COMP550@UNC 38

Theorem 22.4: If there is no negative-weight
cycles reachable from 𝑠, then return true,
otherwise return false.

• See from book

All-Pair Shortest Paths

COMP550@UNC 39

Application: Computing distance table for a road atlas.
Atlanta Chicago Detroit …

Atlanta - 650 520

Chicago 650 - 210

Detroit 520 210 -

One Approach: Run single-source SP algorithm |V| times.

Nonnegative Edges: Use Dijkstra.
 Time complexity:

O(V3) with linear array
O(VElg V) with binary heap

Better approach:
Floyd-Warshall: O(V3), allows negative edges.

Negative Edges: Use Bellman-Ford.
 Time Complexity:

O(V2E) = O(V4) for dense graphs

Floyd-Warshall Algorithm

COMP550@UNC 40

Dynamic programming algorithm

𝑑𝑖𝑗
(𝑘)

= weight of SP from vertex i to vertex j with all intermediate

 vertices in the set {1, 2, … , 𝑘}

𝑑𝑖𝑗
(𝑘)

=
𝑤𝑖𝑗

min 𝑑𝑖𝑗
(𝑘−1)

, 𝑑𝑖𝑘
(𝑘−1)

+ 𝑑𝑘𝑗
(𝑘−1)

, if 𝑘 = 0

, otherwise

two

possibilities

i j i jk

all node in {1, …, k–1} all node in {1, …, k–1}

Floyd-Warshall Algorithm

COMP550@UNC 41

𝛿(𝑖, 𝑗) = 𝑑𝑖𝑗
(𝑛)

So, want to compute 𝐷(𝑛)= (𝑑𝑖𝑗
(𝑛)).

Exercise:
Run on example graph.

Can reduce space from O(V3) to O(V2) — see Exercise 25.2-4.
Can also modify to compute predecessor matrix.

Source: CLRS

Thank You!

COMP550@UNC 42

	Slide 1: COMP 550 Algorithm and Analysis Shortest Path Algorithms Based on CLRS Secs. 22 and 23
	Slide 2: Single-Source Shortest Path (SSSP)
	Slide 3: Single-Source Shortest Path (SSSP)
	Slide 4: Single-Source Shortest Path (SSSP)
	Slide 5: Optimal Substructure
	Slide 6: Optimal Substructure
	Slide 7: Negative-Weight Edges
	Slide 8: Negative-Weight Edges
	Slide 9: Negative-Weight Edges
	Slide 10: Negative-Weight Edges
	Slide 11: Cycles
	Slide 12: Relaxation
	Slide 13: Properties of Relaxation
	Slide 14: SSSP in DAG
	Slide 15: SSSP When Nonnegative-Weight Edge
	Slide 16: Dijkstra’s Algorithm
	Slide 17: Dijkstra’s Algorithm
	Slide 18: Dijkstra’s Algorithm
	Slide 19: Dijkstra’s Algorithm
	Slide 20: Dijkstra’s Algorithm
	Slide 21: Dijkstra’s Algorithm
	Slide 22: Correctness
	Slide 23: Correctness
	Slide 24: Correctness
	Slide 25: Running Time
	Slide 26: SSSP with Negative-Weight Edge
	Slide 27: SSSP with Negative-Weight Edge
	Slide 28: Bellman-Ford Algorithm
	Slide 29: Bellman-Ford Algorithm
	Slide 30: Bellman-Ford Algorithm
	Slide 31: Bellman-Ford Algorithm
	Slide 32: Bellman-Ford Algorithm
	Slide 33: Bellman-Ford Algorithm
	Slide 34: Bellman-Ford Algorithm
	Slide 35: Bellman-Ford Algorithm
	Slide 36: Correctness
	Slide 37: Correctness
	Slide 38: Correctness
	Slide 39: All-Pair Shortest Paths
	Slide 40: Floyd-Warshall Algorithm
	Slide 41: Floyd-Warshall Algorithm
	Slide 42: Thank You!

