
COMP 550
Algorithm and Analysis

Shortest Path 
Algorithms

Based on CLRS Secs. 22 and 23

Some slides are adapted from ones by Prof. Jim Anderson 



Single-Source Shortest Path (SSSP)
• Input: A graph 𝐺 = (𝑉, 𝐸) and a source vertex 𝑣 ∈ 𝑉

• Output: Shortest path from 𝑣 to all other vertices
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Source: Algorithm Design and Application by Goodrich and Tamassia



Single-Source Shortest Path (SSSP)
• Input: A graph 𝐺 = (𝑉, 𝐸) and a source vertex 𝑣 ∈ 𝑉

• Output: Shortest path from 𝑣 to all other vertices

• If 𝐺 is an unweighted graph, then BFS solves the single-source 

shortest path problem.

• What about weighted graph? (this chapter)
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Single-Source Shortest Path (SSSP)
• There can by different variations:

• Single destination shortest path problem: Shortest path to 𝑣 from 

all other vertices

• Single-pair shortest path problem: Shortest path between a single 

pair of vertices

• All pair shortest path problem: Shortest path between all pair of 

vertices

• All of the above can be solved if we can solve Single-Source 

version.
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Optimal Substructure
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• Does shortest-path problem have optimal substructure property?

• Does shortest path from 𝑢 to 𝑣 contain shortest path between some 

other vertices?

• Yes!

Lemma 22.1. (Subpaths of shortest paths are shortest paths) 

If 𝑝 = ⟨𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑘⟩ is a shortest path from 𝑣0 to 𝑣𝑘, then 𝑝𝑖𝑗 = ⟨𝑣𝑖 , 𝑣𝑖+1, … , 𝑣𝑗⟩ with 
0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 is a shortest path from 𝑣𝑖 to 𝑣𝑗.

Exercise: Does longest path problem have optimal substructure property? (CLRS Sec 14.3)



• Proof: ‘’cut and paste’’. 

• Shortest path from 𝑣0 to 𝑣𝑘 looks like this

• If 𝑝𝑖𝑗 is not the shortest path between 𝑣𝑖 and 𝑣𝑗, then assume 𝑝𝑖𝑗
′  is the shortest 

path between them.

• Using 𝑝𝑖𝑗
′  creates shorter path from 𝑣0 to 𝑣𝑘 , contradiction. (𝑝 is not shortest)

Optimal Substructure
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Lemma 22.1. (Subpaths of shortest paths are shortest paths) 

If 𝑝 = ⟨𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑘⟩ is a shortest path from 𝑣0 to 𝑣𝑘, then 𝑝𝑖𝑗 = ⟨𝑣𝑖 , 𝑣𝑖+1, … , 𝑣𝑗⟩ with 
0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 is a shortest path from 𝑣𝑖 to 𝑣𝑗.

𝒗𝟎 𝒗𝒊 𝒗𝒋 𝒗𝒌

𝑝0𝑖 𝑝𝑖𝑗 𝑝𝑗𝑘

𝒗𝟎 𝒗𝒊 𝒗𝒋 𝒗𝒌

𝑝0𝑖 𝑝′𝑖𝑗 𝑝𝑗𝑘



Negative-Weight Edges
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• Notation: 𝛿 𝑠, 𝑢 = Shortest distance from 𝑠 to 𝑣

• 𝛿 𝑠, 𝑏 = 𝑤 𝑠, 𝑎 + 𝑤 𝑎, 𝑏 = 3 + −4 = −1

A graph with 11 vertices

Source: CLRS



Negative-Weight Edges
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• What is 𝛿 𝑠, 𝑐 ?
• Many paths: 𝑠, 𝑐 , ⟨𝑠, 𝑐, 𝑑, 𝑐⟩, 𝑠, 𝑐, 𝑑, 𝑐, 𝑑, 𝑐 , …

• Weight of the loop ⟨𝑐, 𝑑, 𝑐⟩ is positive.

• 𝛿 𝑠, 𝑐 = Weight/cost of path 𝑠, 𝑐 = 5  

A graph with 11 vertices

Source: CLRS



Negative-Weight Edges
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• What is 𝛿 𝑠, 𝑒 ?
• Many paths: 𝑠, 𝑒 , ⟨𝑠, 𝑒, 𝑑, 𝑒⟩, 𝑠, 𝑒, 𝑑, 𝑒, 𝑑, 𝑒 , …

• Weight of the loop ⟨𝑐, 𝑑, 𝑒⟩ is negative.

• 𝛿 𝑠, 𝑒 = −∞ (No shortest path from 𝑠 to 𝑒)

A graph with 11 vertices

Source: CLRS



Negative-Weight Edges
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• 𝛿 𝑠, 𝑓 = 𝛿 𝑠, 𝑔 = −∞ (Reachable via a negative-weight cycle)

• 𝛿 𝑠, ℎ = 𝛿 𝑠, 𝑖 = 𝛿 𝑠, 𝑗 = ∞ (Not reachable from 𝑠)

A graph with 11 vertices

Source: CLRS



Cycles
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• Shortest paths do not contain cycles

• Negative−weight cycle ⇒ No shortest path

• Positive-weight cycle ⇒ Removing cycle decreases path weight

• 0-weight cycle ⇒ Removing cycle maintains the path weight

𝒖 𝒙 𝒗

This represents a cycle not a self-loop



• Shortest-path algorithms keep track of 𝑣. 𝑑 and 𝑣. 𝜋

•  𝑣. 𝑑 = shortest-path estimates, 𝑣. 𝜋 = predecessor vertex in shortest path

• Will call the following two procedures in different algorithms

Relaxation
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(𝑢, 𝑣) = An edge, 𝑤 = weight function

Relax edge 𝑢, 𝑣 : two cases

Source: CLRS



• Consider any algorithm in which 𝑣. 𝑑, and 𝑣. 𝜋 are first initialized by calling 

Initialize(𝐺, 𝑠) [𝑠 is the source], and are only changed by calling Relax. We have:

Properties of Relaxation
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Lemma 22.11 (Upper bound property): 
( 𝑣 :: 𝑣. 𝑑  𝛿(𝑠, 𝑣)) is an invariant.

Corollary 22.12 (No-path property): 
If there is no path from 𝑠 to 𝑣, then 𝑣. 𝑑 = ∞ is an invariant.

More on CLRS

Exercise: Prove them (Proofs in Sec. 22.5)

Lemma 22.14 (Convergence property): 
If 𝑠 𝑢 ⟶ 𝑣 is a SP and 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) prior to calling Relax(u,v,w), 

then 𝑣. 𝑑 = 𝛿(𝑠, 𝑣) all time after Relax(u,v,w) is returned



SSSP in DAG
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• Input graph is a directed acyclic graph

Running time: Θ(𝑉 + 𝐸)

Source: CLRS



SSSP When Nonnegative-Weight Edge
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• Input graph is a weighted graph with 

no negative-weight edge

• Dijkstra’s Algorithm finds SSSPs for 

such graphs

• Basically, generalized BFS

• Idea: When a node is the closest 

undiscovered node to the source vertex, 

we have found its shortest path

“What is the shortest way to travel from Rotterdam to 

Groningen, in general: from given city to given city. It 

is the algorithm for the shortest path, which I 

designed in about twenty minutes. One morning I was 

shopping in Amsterdam with my young fiancée, and 

tired, we sat down on the café terrace to drink a cup 

of coffee and I was just thinking about whether I could 

do this, and I then designed the algorithm for the 

shortest path.…One of the reasons that it is so nice 

was that I designed it without pencil and paper. 

….Eventually, that algorithm became to my great 

amazement, one of the cornerstones of my fame.”

-Edsger Dijkstra (Comm. Of ACM 2001)



Dijkstra’s Algorithm
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𝑆: vertices where we know we’ve 
found the shortest path. (Like gray 
nodes in BFS)

𝑄: Min Priority Queue (order by 𝑣. 𝑑), 
contains unexplored nodes

All vertices are inserted in 𝑄

𝑆 is the head of 𝑄 now

Greedy strategy: Extract 
the head of 𝑄 (its shortest 
distance has been found)

Update any shorter distance 
via node 𝑢

Source: CLRS



Dijkstra’s Algorithm
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Example Courtesy: Prof. Jim Anderson

Not explored yet Currently being explored Already explored



Dijkstra’s Algorithm
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Example Courtesy: Prof. Jim Anderson

Not explored yet Currently being explored Already explored



Dijkstra’s Algorithm
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Example Courtesy: Prof. Jim Anderson

Not explored yet Currently being explored Already explored



Dijkstra’s Algorithm
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Example Courtesy: Prof. Jim Anderson

Not explored yet Currently being explored Already explored



Dijkstra’s Algorithm
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Example Courtesy: Prof. Jim Anderson

Not explored yet Currently being explored Already explored



Correctness
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Loop invariant: At the start of each iteration of the while 

loop, 𝑣. 𝑑 = 𝛿(𝑠, 𝑣) for all 𝑣 ∈ 𝑆. (𝑆 = 𝑉 when terminate)

• Initialization: 𝑆 = ∅ (Trivial)

• IH: At the start of 𝑘-th iteration, 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) for all 𝑢 ∈  𝑉.

• Consider the k-th iteration and show that the LI holds at the start 

of (k+1)-st iteration

Theorem 24.6: Upon termination, 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) for all 𝑢 ∈  𝑉. (assuming non-
negative weights).

• The 𝑘-th iteration inserts a new vertex to 𝑆

• Need to show that the LI holds for the new vertex



Correctness
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Maintenance (Inductive Step):

• 𝑢 is extracted from 𝑄 = 𝑉 − 𝑆 (our goal is to show 𝑢. 𝑑 = 𝛿(𝑠, 𝑢))

• If no 𝑠 to 𝑢 path exists, then 𝑢. 𝑑 = 𝛿 𝑠, 𝑢 = ∞

• Otherwise, let ⟨𝑠, … , 𝑥, 𝑦, … 𝑢⟩ be a shortest path where

• 𝑦 is the first vertex in the path that is NOT is 𝑆

• 𝛿 𝑠, 𝑦 ≤ 𝛿 𝑠, 𝑢 , because no negative edge

• 𝑢. 𝑑 ≤ 𝑦. 𝑑, because 𝑢 is just extracted from 𝑄, but 𝑦 is not.

• Using the upper-bound property, 

𝛿 𝑠, 𝑦 ≤ 𝛿 𝑠, 𝑢 ≤ 𝑢. 𝑑 ≤ 𝑦. 𝑑 (1)

Theorem 24.6: Upon termination, 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) for all 𝑢 ∈  𝑉. (assuming non-
negative weights).

Source: CLRS



Correctness
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Maintenance (Inductive Step):

• 𝑥. 𝑑 = 𝛿(𝑠, 𝑥), because 𝑥 ∈ 𝑆 (by Inductive Hypothesis)

• edge (𝑥, 𝑦) was relaxed during the loop that added 𝑥 to 𝑆

• Since (𝑥, 𝑦) is in a SP from 𝑠 to 𝑦 and (𝑥, 𝑦) was relaxed when 

𝑥. 𝑑 = 𝛿 𝑠, 𝑥 , 𝑦. 𝑑 gets the value of 𝛿 𝑠, 𝑦  at that time 

(convergence property: Lemma 22.14).

• So, when 𝑢 is extracted from 𝑄, 𝑦. 𝑑 = 𝛿(𝑠, 𝑦) already holds.

• From (1), we get 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) 

Theorem 24.6: Upon termination, 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) for all 𝑢 ∈  𝑉. (assuming non-
negative weights).

Source: CLRS
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Running time with binary heap is 𝑂( 𝑉 + 𝐸 lg 𝑉), which is 

𝑂(𝐸 lg 𝑉) if 𝐸 = Ω(𝑉) 



SSSP with Negative-Weight Edge
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• Dijkstra’s algorithm fails when there are negative edges

• Dijkstra’s algorithm discovers 𝑤 via 𝑣. (𝑤. 𝑑 is set to 2).

s

v

u

w

6

-61

1



SSSP with Negative-Weight Edge
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• Bellman-Ford Algorithm

• Can handle negative-weight edges and “detect” reachable negative-weight 

cycles.

Negative cycle 
detection

Negative cycle exists

No negative cycle

Running time:𝑂(𝑉 ⋅ 𝐸)

Source: CLRS



Bellman-Ford Algorithm
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Loop invariant for the outer for loop:

For every vertex 𝑣, 𝑣. 𝑑 ≤ shortest-path length 
from 𝑠 to 𝑣 involving at most 𝑖 − 1 edges.

Why the outer loop runs 𝑉 − 1 times?

Another Loop invariant for the outer for loop:

For every vertex 𝑣, if there is a shortest path 
from s to v with at most 𝑖 − 1 edges, then 𝑣. 𝑑 =
𝛿 𝑠, 𝑣 .



Bellman-Ford Algorithm
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Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)



Bellman-Ford Algorithm

COMP550@UNC 30

Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)



Bellman-Ford Algorithm
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Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)

Red edges denote predecessor relations (𝑣. 𝜋)



Bellman-Ford Algorithm
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Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)



Bellman-Ford Algorithm
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Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)



Bellman-Ford Algorithm
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Example Courtesy: Prof. Jim Anderson

s

Edge ordering: 𝑢,⋅ , 𝑣,⋅ , 𝑥,⋅ , 𝑦,⋅ , (𝑠,⋅)



Bellman-Ford Algorithm
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The algorithm is based on dynamic programming ideas 

𝑑(𝑣, 𝑖)  = weight of the shortest path from 𝑠 to 𝑣 that has at most 𝑖 hops.

𝑑 𝑣, 𝑖 =

0

∞

min( 𝑑 𝑢, 𝑖 − 1 + 𝑤 𝑢, 𝑣 : 𝑣 ∈ 𝐴𝑑𝑗 𝑢 ∪ 𝑑(𝑣, 𝑖 − 1))

, if 𝑣 = 𝑠 and 𝑗 = 0

, if 𝑣 ≠ 𝑠 and 𝑗 = 0

, otherwise

Table (that is not 
explicitly stored) 
for the example 
graph:

Note: i-th row is the computed distance after the i-
th iteration (depends on edge ordering in the CLRS 
pseudo-code, a better distance may be computed 
early)

s



Correctness
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A Loop invariant for the outer for loop:

For every vertex 𝑣, if there is a shortest path from 
𝑠 to 𝑣 with at most 𝑖 − 1 edges, then 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 .

Initialization: 𝑖 = 1, only 𝛿 𝑠, 𝑠 = 0 involves at most 0 edges.

IH: At the start of 𝑘-th iteration, 𝑣. 𝑑 = 𝛿(𝑠, 𝑣) for all 𝑢 ∈  𝑉 that has a SP from 𝑠 

involving at most 𝑘 − 1 edges.

Maintenance: Assume that a SP from 𝑠 to 𝑣 has 𝑘 edges.

Let 𝑢 be the predecessor of 𝑣 in this path. (So, a SP from 𝑠 to 𝑢 has 𝑘 − 1 edges)

By IH, 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) holds at the start of k-th iteration.

Relaxing edge (𝑢, 𝑣) produces 𝑣. 𝑑 = 𝛿(𝑠, 𝑣)  (Convergence property Lem. 22.14 in CLRS)



Correctness
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Lemma 22.2: Assuming no negative-weight cycles 
reachable from 𝑠, 𝑣. 𝑑 = 𝛿(𝑠, 𝑣) holds upon termination 
for all vertices v reachable from s.

• Since there is no negative-weight reachable cycle, any 

shortest path from 𝑠 to 𝑣 has at most 𝑉 − 1 edges.

• By the loop invariant, upon termination, if there is a shortest 

path from 𝑠 to 𝑣 with at most |𝑉| − 1 edges, then 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 .

• So, for all reachable 𝑣, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 .



Correctness
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Theorem 22.4: If there is no negative-weight 
cycles reachable from 𝑠, then return true, 
otherwise return false.

• See from book



All-Pair Shortest Paths
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Application: Computing distance table for a road atlas.
Atlanta    Chicago    Detroit   … 

Atlanta     -               650           520

Chicago  650              -              210

Detroit    520            210             -

 

One Approach: Run single-source SP algorithm |V| times.

Nonnegative Edges:  Use Dijkstra.
  Time complexity:

O(V3) with linear array
O(VElg V) with binary heap

Better approach:
Floyd-Warshall: O(V3), allows negative edges.

Negative Edges: Use Bellman-Ford. 
  Time Complexity:

O(V2E) = O(V4) for dense graphs



Floyd-Warshall Algorithm
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Dynamic programming algorithm

𝑑𝑖𝑗
(𝑘)

= weight of SP from vertex i to vertex j with all intermediate

                 vertices in the set {1, 2, … , 𝑘}

𝑑𝑖𝑗
(𝑘)

=
𝑤𝑖𝑗

min 𝑑𝑖𝑗
(𝑘−1)

, 𝑑𝑖𝑘
(𝑘−1)

+ 𝑑𝑘𝑗
(𝑘−1)

, if 𝑘 = 0

, otherwise

two

possibilities

i j i jk

all node in {1, …, k–1} all node in {1, …, k–1}



Floyd-Warshall Algorithm
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𝛿(𝑖, 𝑗)  =  𝑑𝑖𝑗
(𝑛)

So, want to compute 𝐷(𝑛)= (𝑑𝑖𝑗
(𝑛)).

Exercise:
Run on example graph.

Can reduce space from O(V3) to O(V2) — see Exercise 25.2-4.
Can also modify to compute predecessor matrix.

Source: CLRS



Thank You!
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